The High Yield Expansion and Megakaryocytic Differentiation of Human Umbilical Cord Blood CD133+ Cells

نویسندگان

  • Mahin Nikougoftar Zarif
  • Masoud Soleimani
  • Hassan Abolghasemi
  • Naser Amirizade
  • Saeid Abroun
  • Saeid Kaviani
چکیده

OBJECTIVE Despite of many benefits, umbilical cord blood (UCB) hematopoietic stem cell (HSC) transplantation is associated with low number of stem cells and slow engraftment; in particular of platelets. So, expanded HSCs and co-transfusion of megakaryocyte (MK) progenitor cells can shorten this period. In this study, we evaluated the cytokine conditions for maximum expansion and MK differentiation of CD133(+) HSCs. MATERIALS AND METHODS In this experimental study, The CD133(+) cells were separated from three cord blood samples by magnetic activated cell sorting (MACS) method, expanded in different cytokine combinations for a week and differentiated in thrombopoietin (TPO) for the second week. Differentiation was followed by the flow cytometry detection of CD41 and CD61 surface markers. Colony forming unit (CFU) assay and DNA analysis were done for colonogenic capacity and ploidy assay. RESULTS CD133(+) cells showed maximum expansion in the stem span medium with stem cell factor (SCF) + FMS-like tyrosine kinase 3-ligand (Flt3-L) + TPO but the maximum differentiation was seen when CD133(+) cells were expanded in stem span medium with SCF + Interleukin 3 (IL-3) + TPO for the first and in TPO for the second week. Colony Forming Unit-MK (CFU-MK) was formed in three sizes of colonies in the mega-cult medium. In the DNA analysis; 25.2 ± 6.7% of the cells had more than 2n DNA mass. CONCLUSION Distinct differences in the MK progenitor cell count were observed when the cells were cultured in stem span medium with TPO, SCF, IL-3 and then the TPO in the second week. Such strategy could be applied for optimization of CD133(+) cells expansion followed by MK differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofiber Expansion of Umbilical Cord Blood Hematopoietic Stem Cells

Background The aim of this study was the ex vivo expansion of Umbilical Cord Blood hematopoietic stem cells on biocompatible nanofiber scaffolds. Materials and Methods CD133+ hematopoietic stem cells were separated from umbilical cord blood using MidiMacs (positive selection) system by means of monocolonal antibody CD133 (microbeads) subsequently, flowcytometry method was done to asses...

متن کامل

Ex Vivo Expansion of Umbilical Cord Blood Hematopoietic Stem Cells on Collagen- Fibronectin Coated Electrospun Nano Scaffold

Background and Objective: Umbilical Cord blood (UCB) hematopoietic stem cell (HSC) transplantation is a therapeutic approach for the treatment of malignant and non-malignant hematologic disorders due to ease of collection, lack of risk for donors and lower levels of infection. Moreover, it is considered a good alternative for bone marrow HSC transplantation. The main limitation of their use is ...

متن کامل

Effects of CXCR1 and CXCR2 inhibition on expansion and differentiation of umbilical cord blood CD133(+) cells into megakaryocyte progenitor cells.

OBJECTIVE There have been various reports on the roles of CXC receptors (CXCR) in modulation of hematopoiesis. In the present study, we investigated the effects of CXCR1 and/or CXCR2 inhibition on expansion and differentiation of umbilical cord blood (UCB) CD133(+) cells into megakaryocytic progenitors. MATERIALS AND METHODS Purified UCB CD133(+) cells were cultured in a serum-free liquid cul...

متن کامل

Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds

Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011